469 research outputs found

    Agile wireless transmission strategies

    Get PDF

    Rate adaption using acknowledgement feedback in finite-state Markov channels with collisions

    Get PDF
    We investigate packet-by-packet rate adaptation so as to maximize the throughput. We consider a finite-state Markov channel (FSMC) with collisions, which models channel fading as well as collisions due to multi-user interference. To limit the amount of feedback data, we only use past packet acknowledgements (ACKs) and past rates as channel state information. The maximum achievable throughput is computationally prohibitive to determine, thus we employ a two-pronged approach. Firstly, we derive new upper bounds on the maximum achievable throughput, which are tighter than previously known ones. Secondly, we propose the particle-filter-based rate adaptation (PRA), which employs a particle filter to estimate the a posteriori channel distribution. The PRA can easily be implemented even when the number of available rates is large. Numerical studies show that the PRA performs within one dB of SNR to the proposed upper bounds for a slowly time-varying channel, even in the presence of multi-user interference

    Rate adaptation using acknowlegement feedback: throughput upper bounds

    Get PDF
    We consider packet-by-packet rate adaptation to maximize the throughput over a finite-state Markov channel. To limit the amount of feedback data, we use past packet acknowledgements (ACKs) and past rates as channel state information. It is known that the maximum achievable throughput is computationally prohibitive to determine. Thus, in this paper we derive two upper bounds on the maximum achievable throughput, which are tighter than previously known ones. We compare the upper bounds with a known myopic rate-adaptation policy. Numerical studies over a wide range of SNR suggest that the myopic rate-adaptation policy is close to the upper bounds and may be adequate in slowly time-varying channels

    Effects of RANS-Type turbulence models on the convective heat loss computed by CFD in the solar two power tower

    Get PDF
    The effect of the choice of Reynolds-Averaged Navier-Stokes (RANS) type turbulence closure on the Computational Fluid Dynamics (CFD) prediction of convective heat losses from the Solar Two central receiver is considered in this paper for a simplified receiver geometry approximated by flat panels. Computed convective losses at steady state are ~ 2-3% (1%) of the total power absorbed by the receiver, at high (low) wind speed, depending on the turbulence model chosen. The simulation results are consistent with those of available correlations for rough cylinders, if the macroscopic roughness due to the panel edges is accounted for, as well as with the low speed experimental results, within the respective error bars

    Theory of spin-2 Bose-Einstein condensates: spin-correlations, magnetic response, and excitation spectra

    Full text link
    The ground states of Bose-Einstein condensates of spin-2 bosons are classified into three distinct (ferromagnetic, ^^ ^^ antiferromagnetic", and cyclic) phases depending on the s-wave scattering lengths of binary collisions for total-spin 0, 2, and 4 channels. Many-body spin correlations and magnetic response of the condensate in each of these phases are studied in a mesoscopic regime, while low-lying excitation spectra are investigated in the hermodynamic regime. In the mesoscopic regime, where the system is so tightly confined that the spatial degrees of freedom are frozen, the exact, many-body ground state for each phase is found to be expressed in terms of the creation operators of pair or trio bosons having spin correlations. These pairwise and trio-wise units are shown to bring about some unique features of spin-2 BECs such as a huge jump in magnetization from minimum to maximum possible values and the robustness of the minimum-magnetization state against an applied agnetic field. In the thermodynamic regime, where the system is spatially uniform, low-lying excitation spectra in the presence of magnetic field are obtained analytically using the Bogoliubov approximation. In the ferromagnetic phase, the excitation spectrum consists of one Goldstone mode and four single-particle modes. In the antiferromagnetic phase, where spin-singlet ^^ ^^ pairs" undergo Bose-Einstein condensation, the spectrum consists of two Goldstone modes and three massive ones, all of which become massless when magnetic field vanishes. In the cyclic phase, where boson ^^ ^^ trios" condense into a spin-singlet state, the spectrum is characterized by two Goldstone modes, one single-particle mode having a magnetic-field-independent energy gap, and a gapless single-particle mode that becomes massless in the absence of magnetic field.Comment: 28 pages, 4 figure

    Dynamics of spin-2 Bose condensate driven by external magnetic fields

    Get PDF
    Dynamic response of the F=2 spinor Bose-Einstein condensate (BEC) under the influence of external magnetic fields is studied. A general formula is given for the oscillation period to describe population transfer from the initial polar state to other spin states. We show that when the frequency and the reduced amplitude of the longitudinal magnetic field are related in a specific manner, the population of the initial spin-0 state will be dynamically localized during time evolution. The effects of external noise and nonlinear spin exchange interaction on the dynamics of the spinor BEC are studied. We show that while the external noise may eventually destroy the Rabi oscillations and dynamic spin localization, these coherent phenomena are robust against the nonlinear atomic interaction.Comment: 16 pages, 7 figures. accepted by Phys. Rev.

    Ground State and Quasiparticle Spectrum of a Two Component Bose-Einstein Condensate

    Full text link
    We consider a dilute atomic Bose-Einstein condensate with two non-degenerate internal energy levels. The presence of an external radiation field can result in new ground states for the condensate which result from the lowering of the condensate energy due to the interaction energy with the field. In this approach there are no instabilities in the quasiparticle spectrum as was previously found by Goldstein and Meystre (Phys. Rev. A \QTR{bf}{55}, 2935 (1997)).Comment: 20 pages, 2 figures RevTex. Submitted to Phys. Rev. A; Revised versio
    corecore